An Integrated Design, Material, and Fabrication Platform for Engineering Biomechanically and Biologically Functional Soft Tissues

Onur Bas, Davide D'Angella, Jeremy G. Baldwin, Nathan J. Castro, Felix M. Wunner, Navid T. Saidy, Stefan Kollmannsberger, Alessandro Reali, Ernst Rank, Elena M. De-Juan-Pardo, Dietmar W. Hutmacher

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

88 Zitate (Scopus)

Abstract

We present a design rationale for stretchable soft network composites for engineering tissues that predominantly function under high tensile loads. The convergence of 3D-printed fibers selected from a design library and biodegradable interpenetrating polymer networks (IPNs) result in biomimetic tissue engineered constructs (bTECs) with fully tunable properties that can match specific tissue requirements. We present our technology platform using an exemplary soft network composite model that is characterized to be flexible, yet ∼125 times stronger (E = 3.19 MPa) and ∼100 times tougher (WExt = ∼2000 kJ m-3) than its hydrogel counterpart.

OriginalspracheEnglisch
Seiten (von - bis)29430-29437
Seitenumfang8
FachzeitschriftACS Applied Materials and Interfaces
Jahrgang9
Ausgabenummer35
DOIs
PublikationsstatusVeröffentlicht - 6 Sept. 2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „An Integrated Design, Material, and Fabrication Platform for Engineering Biomechanically and Biologically Functional Soft Tissues“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren