TY - GEN
T1 - An innovative development of a five-hole pressure probe for highly unsteady flow phenomena
AU - Heckmeier, Florian M.
AU - Iglesias, Daniel
AU - Kienitz, Sascha
AU - Breitsamter, Christian
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - An advanced unsteady multi-hole pressure probe is developed in cooperation between the Chair of Aerodynamics and Fluid Mechanics of the Technical University of Munich, the probe manufacturer Vectoflow GmbH and the sensor producer fos4X GmbH. The application of additive manufacturing enables a wide variation in probe geometries. The spatial characteristics of the unsteady probe are determined in the aerodynamic calibration in a known steady uniform jet. Furthermore, the acoustic system inside the channels of the probe is investigated experimentally in the dynamic calibration. Both aerodynamic and dynamic calibration ensure an accurate reconstruction of the velocity components. Measurements of the near wake of a circular cylinder have been recorded with the unsteady probe and compared to data from the literature and corresponding hot-wire anemometry measurements. Further improvements to enhance the range of applications of the probe have been initiated: This includes the miniaturization of the probe. Moreover, an unsteady differential fiber-optic sensor and its optic and passive measurement principle are introduced which shall improve the main dynamic specifications of the probe. By combining the additive manufactured pressure probe design and the novel fiber-optic sensor, more accurate measurements of high frequency flow phenomena are expected.
AB - An advanced unsteady multi-hole pressure probe is developed in cooperation between the Chair of Aerodynamics and Fluid Mechanics of the Technical University of Munich, the probe manufacturer Vectoflow GmbH and the sensor producer fos4X GmbH. The application of additive manufacturing enables a wide variation in probe geometries. The spatial characteristics of the unsteady probe are determined in the aerodynamic calibration in a known steady uniform jet. Furthermore, the acoustic system inside the channels of the probe is investigated experimentally in the dynamic calibration. Both aerodynamic and dynamic calibration ensure an accurate reconstruction of the velocity components. Measurements of the near wake of a circular cylinder have been recorded with the unsteady probe and compared to data from the literature and corresponding hot-wire anemometry measurements. Further improvements to enhance the range of applications of the probe have been initiated: This includes the miniaturization of the probe. Moreover, an unsteady differential fiber-optic sensor and its optic and passive measurement principle are introduced which shall improve the main dynamic specifications of the probe. By combining the additive manufactured pressure probe design and the novel fiber-optic sensor, more accurate measurements of high frequency flow phenomena are expected.
UR - http://www.scopus.com/inward/record.url?scp=85075537793&partnerID=8YFLogxK
U2 - 10.1115/GT2019-90079
DO - 10.1115/GT2019-90079
M3 - Conference contribution
AN - SCOPUS:85075537793
T3 - Proceedings of the ASME Turbo Expo
BT - Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -