An Improved Method for Class-specific Keyword Extraction: A Case Study in the German Business Registry

Stephen Meisenbacher, Tim Schopf, Weixin Yan, Patrick Holl, Florian Matthes

Publikation: KonferenzbeitragPapierBegutachtung

Abstract

The task of is often an important initial step in unsupervised information extraction, forming the basis for tasks such as topic modeling or document classification. While recent methods have proven to be quite effective in the extraction of keywords, the identification of keywords, or only those pertaining to a predefined class, remains challenging. In this work, we propose an improved method for class-specific keyword extraction, which builds upon the popular library to identify only keywords related to a class described by . We test this method using a dataset of German business registry entries, where the goal is to classify each business according to an economic sector. Our results reveal that our method greatly improves upon previous approaches, setting a new standard for keyword extraction.
OriginalspracheEnglisch (Amerika)
Seiten159–165
PublikationsstatusVeröffentlicht - 21 Juli 2024
VeranstaltungProceedings of the 20th Conference on Natural Language Processing - Vienna, Österreich
Dauer: 10 Okt. 202413 Okt. 2024
https://aclanthology.org/volumes/2024.konvens-main/

Konferenz

KonferenzProceedings of the 20th Conference on Natural Language Processing
Land/GebietÖsterreich
OrtVienna
Zeitraum10/10/2413/10/24
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „An Improved Method for Class-specific Keyword Extraction: A Case Study in the German Business Registry“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren