An experimental comparison of discrete and continuous shape optimization methods

Maria Klodt, Thomas Schoenemann, Kalin Kolev, Marek Schikora, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

37 Zitate (Scopus)

Abstract

Shape optimization is a problem which arises in numerous computer vision problems such as image segmentation and multiview reconstruction. In this paper, we focus on a certain class of binary labeling problems which can be globally optimized both in a spatially discrete setting and in a spatially continuous setting. The main contribution of this paper is to present a quantitative comparison of the reconstruction accuracy and computation times which allows to assess some of the strengths and limitations of both approaches. We also present a novel method to approximate length regularity in a graph cut based framework: Instead of using pairwise terms we introduce higher order terms. These allow to represent a more accurate discretization of the L 2-norm in the length term.

OriginalspracheEnglisch
TitelComputer Vision - ECCV 2008 - 10th European Conference on Computer Vision, Proceedings
Herausgeber (Verlag)Springer Verlag
Seiten332-345
Seitenumfang14
AuflagePART 1
ISBN (Print)3540886818, 9783540886815
DOIs
PublikationsstatusVeröffentlicht - 2008
Extern publiziertJa
Veranstaltung10th European Conference on Computer Vision, ECCV 2008 - Marseille, Frankreich
Dauer: 12 Okt. 200818 Okt. 2008

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 1
Band5302 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz10th European Conference on Computer Vision, ECCV 2008
Land/GebietFrankreich
OrtMarseille
Zeitraum12/10/0818/10/08

Fingerprint

Untersuchen Sie die Forschungsthemen von „An experimental comparison of discrete and continuous shape optimization methods“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren