An evaluation of autoencoder and sparse filter as automated feature extraction process for automotive damper defect diagnosis

Thomas Zehelein, Philip Werk, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

With reduced driver's perceptions in regard of defects of a vehicle's suspension system, caused by autonomous driving, health monitoring of automotive dampers during driving will become increasingly relevant. Using only sensor signals of the vehicle's electronic stability program for this task is cost-efficient since those sensors are already available. Machine learning algorithms in conjunction with actual measurement data can be used to classify sensor readings according to the vehicle's damper health state. This paper evaluates two methods for automated feature generation, namely 'Autoencoder' and 'Sparse Filter The classification performance using those feature sets is compared to established feature engineering methods.

OriginalspracheEnglisch
Titel2019 14th International Conference on Ecological Vehicles and Renewable Energies, EVER 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728137032
DOIs
PublikationsstatusVeröffentlicht - Mai 2019
Veranstaltung14th International Conference on Ecological Vehicles and Renewable Energies, EVER 2019 - Monte-Carlo, Monaco
Dauer: 8 Mai 201910 Mai 2019

Publikationsreihe

Name2019 14th International Conference on Ecological Vehicles and Renewable Energies, EVER 2019

Konferenz

Konferenz14th International Conference on Ecological Vehicles and Renewable Energies, EVER 2019
Land/GebietMonaco
OrtMonte-Carlo
Zeitraum8/05/1910/05/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „An evaluation of autoencoder and sparse filter as automated feature extraction process for automotive damper defect diagnosis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren