An eigen approach to stable multichannel blind deconvolution under an FIR subspace model

Kiryung Lee, Felix Krahmer, Justin Romberg

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Multichannel blind deconvolution is a bilinear inverse problem that recovers an unknown signal observed as convolutions with multiple unknown filters. We are particularly interested in the case where the unknown filters are known to be short-length finite impulse response (FIR) filters a priori. Under this FIR prior, classical methods based on the commutativity of the convolution were proposed and analyzed in 1990s. However, these classical methods are sensitive to additive noise when working with finitely many observations. In certain applications, domain-specific knowledge provides a subspace prior on the FIR coefficients. Leveraging this additional prior, we propose a modification of the classical methods to alleviates the sensitivity and derive its nonasymptotic analysis. Numerical results show that this modified method improves the classical method significantly and outperforms other competing methods for multichannel blind deconvolution.

OriginalspracheEnglisch
Titel2017 12th International Conference on Sampling Theory and Applications, SampTA 2017
Redakteure/-innenGholamreza Anbarjafari, Andi Kivinukk, Gert Tamberg
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten386-390
Seitenumfang5
ISBN (elektronisch)9781538615652
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2017
Veranstaltung12th International Conference on Sampling Theory and Applications, SampTA 2017 - Tallinn, Estland
Dauer: 3 Juli 20177 Juli 2017

Publikationsreihe

Name2017 12th International Conference on Sampling Theory and Applications, SampTA 2017

Konferenz

Konferenz12th International Conference on Sampling Theory and Applications, SampTA 2017
Land/GebietEstland
OrtTallinn
Zeitraum3/07/177/07/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „An eigen approach to stable multichannel blind deconvolution under an FIR subspace model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren