An Asymptotically MSE-Optimal Estimator Based on Gaussian Mixture Models

Michael Koller, Benedikt Fesl, Nurettin Turan, Wolfgang Utschick

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

30 Zitate (Scopus)

Abstract

This paper investigates a channel estimator based on Gaussian mixture models (GMMs) in the context of linear inverse problems with additive Gaussian noise. We fit a GMM to given channel samples to obtain an analytic probability density function (PDF) which approximates the true channel PDF. Then, a conditional mean estimator (CME) corresponding to this approximating PDF is computed in closed form and used as an approximation of the optimal CME based on the true channel PDF. This optimal CME cannot be calculated analytically because the true channel PDF is generally unknown. We present mild conditions which allow us to prove the convergence of the GMM-based CME to the optimal CME as the number of GMM components is increased. Additionally, we investigate the estimator's computational complexity and present simplifications based on common model-based insights. Further, we study the estimator's behavior in numerical experiments including multiple-input multiple-output (MIMO) and wideband systems.

OriginalspracheEnglisch
Seiten (von - bis)4109-4123
Seitenumfang15
FachzeitschriftIEEE Transactions on Signal Processing
Jahrgang70
DOIs
PublikationsstatusVeröffentlicht - 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „An Asymptotically MSE-Optimal Estimator Based on Gaussian Mixture Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren