An Analysis of Distributional Shifts in Automated Driving Functions in Highway Scenarios

Oliver De Candido, Xinyang Li, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

We investigate the distributional shifts between datasets which pose a challenge to validate safety critical driving functions which incorporate Machine Learning (ML)-based algorithms. First, we describe the possible distributional shifts which can occur in highway driving datasets. Following this, we analyze-both qualitatively and quantitatively - the distributional shifts between two publicly available, and widely used, highway driving datasets. We demonstrate that a safety critical driving function, e.g., a lane change maneuver prediction, trained on one dataset will not generalize as expected to the other dataset in the presence of these distributional shifts. This highlights the impact which distributional shifts can have on safety critical driving functions. We suggest that an analysis of the datasets used to train ML-based algorithms incorporated in safety critical driving functions plays an important role in building a safety-argument for validation.

OriginalspracheEnglisch
Titel2022 IEEE 95th Vehicular Technology Conference - Spring, VTC 2022-Spring - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665482431
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring - Helsinki, Finnland
Dauer: 19 Juni 202222 Juni 2022

Publikationsreihe

NameIEEE Vehicular Technology Conference
Band2022-June
ISSN (Print)1550-2252

Konferenz

Konferenz95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring
Land/GebietFinnland
OrtHelsinki
Zeitraum19/06/2222/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „An Analysis of Distributional Shifts in Automated Driving Functions in Highway Scenarios“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren