An Analog and Time-Discrete Neuron with Charge-Injection for Use in Ultra-Low Power Spiking Neural Networks

Matthias Ochs, Markus Dietl, Ralf Brederlow

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This paper shows a new concept for a neuron circuit for use in artificial spiking neural networks. The circuit performs the simplified analog calculations (LIF-neuron) of a biological neuron but uses advanced analog circuit design techniques to achieve functionality in a very small area and with large-scale integration in CMOS technology in mind. This neuron consumes only a tiny amount of power and is well suited for use within a spiking neural network in smart, ultra-low energy sensing applications. Due to the mapping of a spike event directly to a central clocking signal, large-scale integration and the mapping of weights using standard artificial intelligence algorithms have been drastically simplified. Simulations show that the analog computation concept can save a lot of energy.

OriginalspracheEnglisch
Titel2024 19th Conference on Ph.D Research in Microelectronics and Electronics, PRIME 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350386301
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung19th Conference on Ph.D Research in Microelectronics and Electronics, PRIME 2024 - Larnaca, Zypern
Dauer: 9 Juni 202412 Juni 2024

Publikationsreihe

Name2024 19th Conference on Ph.D Research in Microelectronics and Electronics, PRIME 2024

Konferenz

Konferenz19th Conference on Ph.D Research in Microelectronics and Electronics, PRIME 2024
Land/GebietZypern
OrtLarnaca
Zeitraum9/06/2412/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „An Analog and Time-Discrete Neuron with Charge-Injection for Use in Ultra-Low Power Spiking Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren