Algorithms for right-sizing heterogeneous data centers

Susanne Albers, Jens Quedenfeld

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Power consumption is a dominant and still growing cost factor in data centers. In time periods with low load, the energy consumption can be reduced by powering down unused servers. We resort to a model introduced by Lin, Wierman, Andrew and Thereska (23,24) that considers data centers with identical machines, and generalize it to heterogeneous data centers with d different server types. The operating cost of a server depends on its load and is modeled by an increasing, convex function for each server type. In contrast to earlier work, we consider the discrete setting, where the number of active servers must be integral. Thereby, we seek truly feasible solutions. For homogeneous data centers (d=1), both the offline and the online problem were solved optimally in (3,4) In this paper, we study heterogeneous data centers with general time-dependent operating cost functions. We develop an online algorithm based on a work function approach which achieves a competitive ratio of 2d + 1 + ϵ for any ϵ > 0. For time-independent operating cost functions, the competitive ratio can be reduced to 2d + 1. There is a lower bound of 2d shown in (5), so our algorithm is nearly optimal. For the offline version, we give a graph-based (1+ϵ)-approximation algorithm. Additionally, our offline algorithm is able to handle time-variable data-center sizes.

OriginalspracheEnglisch
TitelSPAA 2021 - Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures
Herausgeber (Verlag)Association for Computing Machinery
Seiten48-58
Seitenumfang11
ISBN (elektronisch)9781450380706
DOIs
PublikationsstatusVeröffentlicht - 6 Juli 2021
Veranstaltung33rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2021 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 6 Juli 20218 Juli 2021

Publikationsreihe

NameAnnual ACM Symposium on Parallelism in Algorithms and Architectures

Konferenz

Konferenz33rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2021
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Online
Zeitraum6/07/218/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Algorithms for right-sizing heterogeneous data centers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren