AiAReSeg: Catheter Detection and Segmentation in Interventional Ultrasound using Transformers

Alex Ranne, Yordanka Velikova, Nassir Navab, Ferdinando Rodriguez Y. Baena

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This work proposes a state-of-the-art transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences. The network architecture was inspired by the Attention in Attention mechanism, temporal tracking networks, and introduced a novel 3D segmentation head that performs 3D deconvolution across time. To train the network, we introduce a new data synthesis pipeline that uses physics-based catheter insertion simulations, along with a convolutional ray-casting ultrasound simulator to produce synthetic ultrasound images of endovascular interventions. The proposed method is validated on a hold-out validation dataset, thus demonstrated robustness to ultrasound noise and a wide range of scanning angles. It was also tested on data collected from silicon aorta phantoms, thus demonstrated its potential for translation from sim-to-real. This work represents a significant step towards safer and more efficient endovascular surgery using interventional ultrasound.

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten8187-8194
Seitenumfang8
ISBN (elektronisch)9798350384574
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Dauer: 13 Mai 202417 Mai 2024

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Land/GebietJapan
OrtYokohama
Zeitraum13/05/2417/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „AiAReSeg: Catheter Detection and Segmentation in Interventional Ultrasound using Transformers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren