AGGREGATING CLOUD-FREE SENTINEL-2 IMAGES with GOOGLE EARTH ENGINE

M. Schmitt, L. H. Hughes, C. Qiu, X. X. Zhu

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

47 Zitate (Scopus)

Abstract

Cloud coverage is one of the biggest concerns in spaceborne optical remote sensing, because it hampers a continuous monitoring of the Earth's surface. Based on Google Earth Engine, a web-and cloud-based platform for the analysis and visualization of large-scale geospatial data, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for user-defined areas of interest and time periods, which can be significantly shorter than the one-year time frames that are commonly used in other multi-temporal image aggregation approaches. We demonstrate the feasibility of our workflow for several cities spread around the globe and affected by different amounts of average cloud cover. The experimental results confirm that our results are better than the results achieved by standard approaches for cloud-free image aggregation.

OriginalspracheEnglisch
Seiten (von - bis)145-152
Seitenumfang8
FachzeitschriftISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Jahrgang4
Ausgabenummer2/W7
DOIs
PublikationsstatusVeröffentlicht - 16 Sept. 2019
Veranstaltung1st Photogrammetric Image Analysis and Munich Remote Sensing Symposium, PIA 2019+MRSS 2019 - Munich, Deutschland
Dauer: 18 Sept. 201920 Sept. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „AGGREGATING CLOUD-FREE SENTINEL-2 IMAGES with GOOGLE EARTH ENGINE“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren