TY - JOUR
T1 - Aerodynamic investigation of vehicle cooling-drag
AU - Baeder, Dirk
AU - Indinger, Thomas
AU - Adams, Nikolaus
AU - Unterlechner, Peter
PY - 2012
Y1 - 2012
N2 - The interaction between cooling-air and external aerodynamics is known as interference. In a conventional car this interference under the hood results in additional drag. It is estimated that about 10% of the overall aerodynamic drag originates from the cooling air [1] depending on the car shape and cooling configuration. Obviously, cooling drag should be minimized for vehicles with low-drag aerodynamics. In this study cooling-air interference-effects are investigated through experimental, numerical and analytical methods with a focus on the surface pressure of the vehicle. The surface pressure of vehicles with and without interference effects is compared. Observations show that when the cooling-air inlet is opened a pressure rise occurs around the inlet, while a pressure drop appears around the outlet. This phenomenon was investigated for several vehicle shapes including a simplified bluff-body (SAE-Body) and a close-to-real quarter-scale model (aeromodel). Using this knowledge, a cooling duct with low cooling drag was investigated. It will be shown that the cooling drag decreases when the air is redirected appropriately, yet the pressure increase at the front of the vehicles cannot be avoided.
AB - The interaction between cooling-air and external aerodynamics is known as interference. In a conventional car this interference under the hood results in additional drag. It is estimated that about 10% of the overall aerodynamic drag originates from the cooling air [1] depending on the car shape and cooling configuration. Obviously, cooling drag should be minimized for vehicles with low-drag aerodynamics. In this study cooling-air interference-effects are investigated through experimental, numerical and analytical methods with a focus on the surface pressure of the vehicle. The surface pressure of vehicles with and without interference effects is compared. Observations show that when the cooling-air inlet is opened a pressure rise occurs around the inlet, while a pressure drop appears around the outlet. This phenomenon was investigated for several vehicle shapes including a simplified bluff-body (SAE-Body) and a close-to-real quarter-scale model (aeromodel). Using this knowledge, a cooling duct with low cooling drag was investigated. It will be shown that the cooling drag decreases when the air is redirected appropriately, yet the pressure increase at the front of the vehicles cannot be avoided.
UR - http://www.scopus.com/inward/record.url?scp=85072505301&partnerID=8YFLogxK
U2 - 10.4271/2012-01-0170
DO - 10.4271/2012-01-0170
M3 - Conference article
AN - SCOPUS:85072505301
SN - 0148-7191
JO - SAE Technical Papers
JF - SAE Technical Papers
T2 - SAE 2012 World Congress and Exhibition
Y2 - 24 April 2012 through 26 April 2012
ER -