Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation

Mert Asim Karaoglu, Nikolas Brasch, Marijn Stollenga, Wolfgang Wein, Nassir Navab, Federico Tombari, Alexander Ladikos

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

11 Zitate (Scopus)

Abstract

Depth estimation from monocular images is an important task in localization and 3D reconstruction pipelines for bronchoscopic navigation. Various supervised and self-supervised deep learning-based approaches have proven themselves on this task for natural images. However, the lack of labeled data and the bronchial tissue’s feature-scarce texture make the utilization of these methods ineffective on bronchoscopic scenes. In this work, we propose an alternative domain-adaptive approach. Our novel two-step structure first trains a depth estimation network with labeled synthetic images in a supervised manner; then adopts an unsupervised adversarial domain feature adaptation scheme to improve the performance on real images. The results of our experiments show that the proposed method improves the network’s performance on real images by a considerable margin and can be employed in 3D reconstruction pipelines.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
Redakteure/-innenMarleen de Bruijne, Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten300-310
Seitenumfang11
ISBN (Print)9783030872014
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Dauer: 27 Sept. 20211 Okt. 2021

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12904 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
OrtVirtual, Online
Zeitraum27/09/211/10/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren