Adaptive sparse grid classification using grid environments

Dirk Pflüger, Ioan Lucian Muntean, Hans Joachim Bungartz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Common techniques tackling the task of classification in data mining employ ansatz functions associated to training data points to fit the data as well as possible. Instead, the feature space can be discretized and ansatz functions centered on grid points can be used. This allows for classification algorithms scaling only linearly in the number of training data points, enabling to learn from data sets with millions of data points. As the curse of dimensionality prohibits the use of standard grids, sparse grids have to be used. Adaptive sparse grids allow to get a trade-off between both worlds by refining in rough regions of the target function rather than in smooth ones. We present new results for some typical classification tasks and show first observations of dimension adaptivity. As the study of the critical parameters during development involves many computations for different parameter values, we used a grid environment which we present.

OriginalspracheEnglisch
TitelComputational Science - ICCS 2007 - 7th International Conference, Proceedings, Part I
Herausgeber (Verlag)Springer Verlag
Seiten708-715
Seitenumfang8
ISBN (Print)9783540725831
DOIs
PublikationsstatusVeröffentlicht - 2007
Veranstaltung7th International Conference on Computational Science, ICCS 2007 - Beijing, China
Dauer: 27 Mai 200730 Mai 2007

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band4487 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz7th International Conference on Computational Science, ICCS 2007
Land/GebietChina
OrtBeijing
Zeitraum27/05/0730/05/07

Fingerprint

Untersuchen Sie die Forschungsthemen von „Adaptive sparse grid classification using grid environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren