Adaptive sampling strategies for risk-averse stochastic optimization with constraints

Florian Beiser, Brendan Keith, Simon Urbainczyk, Barbara Wohlmuth

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

4 Zitate (Scopus)

Abstract

We introduce adaptive sampling methods for stochastic programs with deterministic constraints. First, we propose and analyze a variant of the stochastic projected gradient method, where the sample size used to approximate the reduced gradient is determined on-the-fly and updated adaptively. This method is applicable to a broad class of expectation-based risk measures, and leads to a significant reduction in the individual gradient evaluations used to estimate the objective function gradient. Numerical experiments with expected risk minimization and conditional value-at-risk minimization support this conclusion, and demonstrate practical performance and efficacy for both risk-neutral and risk-averse problems. Second, we propose an SQP-type method based on similar adaptive sampling principles. The benefits of this method are demonstrated in a simplified engineering design application, featuring risk-averse shape optimization of a steel shell structure subject to uncertain loading conditions and model uncertainty.

OriginalspracheEnglisch
Seiten (von - bis)3729-3765
Seitenumfang37
FachzeitschriftIMA Journal of Numerical Analysis
Jahrgang43
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 1 Nov. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Adaptive sampling strategies for risk-averse stochastic optimization with constraints“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren