Adaptive predictive control with neuro-fuzzy parameter estimation for microgrid grid-forming converters

Oluleke Babayomi, Zhenbin Zhang, Yu Li, Ralph Kennel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

11 Zitate (Scopus)

Abstract

Model predictive control (MPC) is a flexible and multivariable control technique with better dynamic performance than linear control. However, MPC is sensitive to parametric mismatches that reduce its control capabilities. In this paper, we present a new method of improving the robustness of MPC to filter parameter variations/mismatches by easily implementable parameter estimation. Furthermore, we extend the proposed technique for wider operating conditions by novel neuro-fuzzy estimation. The results, which are demonstrated by both simulations and real-time hardware-in-the-loop tests, show a steady-state parameter estimation accuracy of 95%, and at least 20% improvement in total harmonic distortion (THD) than conventional non-adaptive MPC under parameter mismatches up to 50% of the nominal values.

OriginalspracheEnglisch
Aufsatznummer7038
FachzeitschriftSustainability (Switzerland)
Jahrgang13
Ausgabenummer13
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Adaptive predictive control with neuro-fuzzy parameter estimation for microgrid grid-forming converters“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren