Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes

Alejandro J. Ordóñez-Conejo, Armin Lederer, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

When signals are measured through physical sensors, they are perturbed by noise. To reduce noise, low-pass filters are commonly employed in order to attenuate high frequency components in the incoming signal, regardless if they come from noise or the actual signal. Therefore, low-pass filters must be carefully tuned in order to avoid significant deterioration of the signal. This tuning requires prior knowledge about the signal, which is often not available in real-world applications. In order to overcome this limitation, we propose an adaptive low-pass filter based on Gaussian process regression. By considering a constant window of previous observations, updates and predictions fast enough for real-world filtering applications can be realized. Moreover, the online optimization of hyperparameters leads to an adaptation of the low-pass behavior, such that no prior tuning is necessary. We show that the estimation error of the proposed method is uniformly bounded, and demonstrate the flexibility and efficiency of the approach in several simulations.

OriginalspracheEnglisch
Titel2022 European Control Conference, ECC 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2234-2240
Seitenumfang7
ISBN (elektronisch)9783907144077
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 European Control Conference, ECC 2022 - London, Großbritannien/Vereinigtes Königreich
Dauer: 12 Juli 202215 Juli 2022

Publikationsreihe

Name2022 European Control Conference, ECC 2022

Konferenz

Konferenz2022 European Control Conference, ECC 2022
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtLondon
Zeitraum12/07/2215/07/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren