Adaptive Hybrid Indexes

Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas Neumann, Alfons Kemper

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

While index structures are crucial components in high-performance query processing systems, they occupy a large fraction of the available memory. Recently-proposed compact indexes reduce this space overhead and thus speed up queries by allowing the database to keep larger working sets in memory. These compact indexes, however, are slower than performance-optimized in-memory indexes because they adopt encodings that trade performance for memory efficiency. Applying different encodings within a single index might allow optimizing both dimensions at the same time-however, it is not clear which encodings should be applied to which index parts at build-time. To take advantage of multiple encodings in one index structure, we present a new framework forming the basis of workload-adaptive hybrid indexes which moves encoding decisions to run-time instead. By sampling incoming queries adaptively, it tracks accesses to index parts and keeps fine-grained statistics which are used for space-and performance-optimized encoding migrations. We evaluated our framework using B+-trees and tries, and examine the adaptation process and space/performance trade-off for real-world and synthetic workloads. For skewed workloads, our framework can reduce the space by up to 82% while retaining more than 90% of the original performance.

OriginalspracheEnglisch
TitelSIGMOD 2022 - Proceedings of the 2022 International Conference on Management of Data
Herausgeber (Verlag)Association for Computing Machinery
Seiten1626-1639
Seitenumfang14
ISBN (elektronisch)9781450392495
DOIs
PublikationsstatusVeröffentlicht - 10 Juni 2022
Veranstaltung2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 12 Juni 202217 Juni 2022

Publikationsreihe

NameProceedings of the ACM SIGMOD International Conference on Management of Data
ISSN (Print)0730-8078

Konferenz

Konferenz2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Online
Zeitraum12/06/2217/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Adaptive Hybrid Indexes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren