Active Function Learning

Angela Jones, Eric Schulz, Björn Meder, Azzurra Ruggeri

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

How do people actively explore to learn about functional relationships, that is, how continuous inputs map onto continuous outputs? We introduce a novel paradigm to investigate information search in continuous, multi-feature function learning scenarios. Participants either actively selected or passively observed information to learn about an underlying linear function. We develop and compare different variants of rule-based (linear regression) and non-parametric (Gaussian process regression) active learning approaches to model participants' active learning behavior. Our results show that participants' performance is best described by a rule-based model that attempts to efficiently learn linear functions with a focus on high and uncertain outcomes. These results advance our understanding of how people actively search for information to learn about functional relations in the environment.

OriginalspracheEnglisch
TitelProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018
Herausgeber (Verlag)The Cognitive Science Society
Seiten578-583
Seitenumfang6
ISBN (elektronisch)9780991196784
PublikationsstatusVeröffentlicht - 2018
Veranstaltung40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018 - Madison, USA/Vereinigte Staaten
Dauer: 25 Juli 201828 Juli 2018

Publikationsreihe

NameProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018

Konferenz

Konferenz40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018
Land/GebietUSA/Vereinigte Staaten
OrtMadison
Zeitraum25/07/1828/07/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Active Function Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren