A unified Imex Runge-Kutta approach for hyperbolic systems with multiscale relaxation

Sebastiano Boscarino, Lorenzo Pareschi, Giovanni Russo

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

45 Zitate (Scopus)

Abstract

In this paper we consider the development of Implicit-Explicit (IMEX) Runge-Kutta schemes for hyperbolic systems with multiscale relaxation. In such systems the scaling depends on an additional parameter which modifies the nature of the asymptotic behavior, which can be either hyperbolic or parabolic. Because of the multiple scalings, standard IMEX Runge-Kutta methods for hyperbolic systems with relaxation lose their efficiency, and a different approach should be adopted to guarantee asymptotic preservation in stiff regimes. We show that the proposed approach is capable of capturing the correct asymptotic limit of the system independently of the scaling used. Several numerical examples confirm our theoretical analysis.

OriginalspracheEnglisch
Seiten (von - bis)2085-2109
Seitenumfang25
FachzeitschriftSIAM Journal on Numerical Analysis
Jahrgang55
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „A unified Imex Runge-Kutta approach for hyperbolic systems with multiscale relaxation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren