A Unified Framework for Implicit Sinkhorn Differentiation

Marvin Eisenberger, Aysim Toker, Laura Leal-Taixe, Florian Bernard, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

The Sinkhorn operator has recently experienced a surge of popularity in computer vision and related fields. One major reason is its ease of integration into deep learning frameworks. To allow for an efficient training of respective neural networks, we propose an algorithm that obtains analytical gradients of a Sinkhorn layer via implicit differentiation. In comparison to prior work, our framework is based on the most general formulation of the Sinkhorn operator. It allows for any type of loss function, while both the target capacities and cost matrices are differentiated jointly. We further construct error bounds of the resulting algorithm for approximate inputs. Finally, we demonstrate that for a number of applications, simply replacing automatic differentiation with our algorithm directly improves the stability and accuracy of the obtained gradients. Moreover, we show that it is computationally more efficient, particularly when resources like GPU memory are scarce. 11Our implementation is available under the following link: https://github.com/marvin-eisenberger/implicit-sinkhorn

OriginalspracheEnglisch
TitelProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Herausgeber (Verlag)IEEE Computer Society
Seiten499-508
Seitenumfang10
ISBN (elektronisch)9781665469463
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, USA/Vereinigte Staaten
Dauer: 19 Juni 202224 Juni 2022

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2022-June
ISSN (Print)1063-6919

Konferenz

Konferenz2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum19/06/2224/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Unified Framework for Implicit Sinkhorn Differentiation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren