A unified classification approach rating clinical utility of protein biomarkers across neurologic diseases

Alexander M. Bernhardt, Steffen Tiedt, Daniel Teupser, Martin Dichgans, Bernhard Meyer, Jens Gempt, Peer Hendrik Kuhn, Mikael Simons, Carla Palleis, Endy Weidinger, Georg Nübling, Lesca Holdt, Lisa Hönikl, Christiane Gasperi, Pieter Giesbertz, Stephan A. Müller, Stephan Breimann, Stefan F. Lichtenthaler, Bernhard Kuster, Matthias MannAxel Imhof, Teresa Barth, Stefanie M. Hauck, Henrik Zetterberg, Markus Otto, Wilko Weichert, Bernhard Hemmer, Johannes Levin

Publikation: Beitrag in FachzeitschriftÜbersichtsartikelBegutachtung

8 Zitate (Scopus)

Abstract

A major evolution from purely clinical diagnoses to biomarker supported clinical diagnosing has been occurring over the past years in neurology. High-throughput methods, such as next-generation sequencing and mass spectrometry-based proteomics along with improved neuroimaging methods, are accelerating this development. This calls for a consensus framework that is broadly applicable and provides a spot-on overview of the clinical validity of novel biomarkers. We propose a harmonized terminology and a uniform concept that stratifies biomarkers according to clinical context of use and evidence levels, adapted from existing frameworks in oncology with a strong focus on (epi)genetic markers and treatment context. We demonstrate that this framework allows for a consistent assessment of clinical validity across disease entities and that sufficient evidence for many clinical applications of protein biomarkers is lacking. Our framework may help to identify promising biomarker candidates and classify their applications by clinical context, aiming for routine clinical use of (protein) biomarkers in neurology.

OriginalspracheEnglisch
Aufsatznummer104456
FachzeitschrifteBioMedicine
Jahrgang89
DOIs
PublikationsstatusVeröffentlicht - März 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „A unified classification approach rating clinical utility of protein biomarkers across neurologic diseases“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren