A toolbox for model-free analysis of fMRI data

P. Gruber, C. Kohler, F. J. Theis

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

We introduce Model-free Toolbox (MFBOX), a Matlab tool-box for analyzing multivariate data sets in an explorative fashion. Its main focus lies on the analysis of functional Nuclear Magnetic Resonance Imaging (fMRI) data sets with various model-free or data-driven techniques. In this context, it can also be used as plugin for SPM5, a popular tool in regression-based fMRI analysis. The toolbox includes BSS algorithms based on various source models including ICA, spatiotemporal ICA, autodecorrelation and NMF. They can all be easily combined with higher-level analysis methods such as reliability analysis using projective clustering of the components, sliding time window analysis or hierarchical decomposition. As an example, we use MFBOX for the analysis of an fMRI experiment and present short comparisons with the SPM results. The MFBOX is freely available for download at http://mfbox.sf.net.

OriginalspracheEnglisch
TitelIndependent Component Analysis and Signal Separation - 7th International Conference, ICA 2007, Proceedings
Herausgeber (Verlag)Springer Verlag
Seiten209-217
Seitenumfang9
ISBN (Print)9783540744931
DOIs
PublikationsstatusVeröffentlicht - 2007
Extern publiziertJa
Veranstaltung7th International Conference on Independent Component Analysis (ICA) and Source Separation, ICA 2007 - London, Großbritannien/Vereinigtes Königreich
Dauer: 9 Sept. 200712 Sept. 2007

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band4666 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz7th International Conference on Independent Component Analysis (ICA) and Source Separation, ICA 2007
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtLondon
Zeitraum9/09/0712/09/07

Fingerprint

Untersuchen Sie die Forschungsthemen von „A toolbox for model-free analysis of fMRI data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren