A system for cloud-based deviation prediction of propulsion energy consumption for EVs

Stefan Grubwinkler, Maria Kugler, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

16 Zitate (Scopus)

Abstract

Energy prediction for electric vehicles (EVs) is a complex problem because the energy consumption depends on a lot of different and varying impact factors. Since the number of vehicles connected to a server will increase, cloud-based approaches can improve the accuracy of energy prediction for EVs. A prediction model is used, which consists of an in-vehicle part for the prediction of the mean value of propulsion energy consumption and of a cloud-based part to predict the relative deviation from a normalized mean energy consumption value on the basis of collected speed profiles. In this paper, the cloud-based part for the deviation prediction is introduced, which can be used for EVs with different vehicle attributes. Extracted statistical features from collected speed profiles, which are stored on a server in the backend, are used as input for multiple regression prediction models. Variations in speed profiles, which can be caused by individual driving behaviour for example, can be considered with the prediction model.

OriginalspracheEnglisch
TitelProceedings of 2013 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2013
Herausgeber (Verlag)IEEE Computer Society
Seiten99-104
Seitenumfang6
ISBN (Print)9781479903801
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung2013 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2013 - Dongguan, China
Dauer: 28 Juli 201330 Juli 2013

Publikationsreihe

NameProceedings of 2013 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2013

Konferenz

Konferenz2013 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2013
Land/GebietChina
OrtDongguan
Zeitraum28/07/1330/07/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „A system for cloud-based deviation prediction of propulsion energy consumption for EVs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren