A Survey of Graph Neural Networks for Electronic Design Automation

Daniela Sanchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, Robert Wille, Wolfgang Ecker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

34 Zitate (Scopus)

Abstract

Driven by Moore's law, the chip design complexity is steadily increasing. Electronic Design Automation (EDA) has been able to cope with the challenging very large-scale integration process, assuring scalability, reliability, and proper time-to-market. However, EDA approaches are time and resource-demanding, and they often do not guarantee optimal solutions. To alleviate these, Machine Learning (ML) has been incorporated into many stages of the design flow, such as in placement and routing. Many solutions employ Euclidean data and ML techniques without considering that many EDA objects are represented naturally as graphs. The trending Graph Neural Networks are an opportunity to solve EDA problems directly using graph structures for circuits, intermediate RTLs, and netlists. In this paper, we present a comprehensive review of the existing works linking the EDA flow for chip design and Graph Neural Networks.

OriginalspracheEnglisch
Titel2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD, MLCAD 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665431668
DOIs
PublikationsstatusVeröffentlicht - 30 Aug. 2021
Extern publiziertJa
Veranstaltung3rd ACM/IEEE Workshop on Machine Learning for CAD, MLCAD 2021 - Raleigh, USA/Vereinigte Staaten
Dauer: 30 Aug. 20213 Sept. 2021

Publikationsreihe

Name2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD, MLCAD 2021

Konferenz

Konferenz3rd ACM/IEEE Workshop on Machine Learning for CAD, MLCAD 2021
Land/GebietUSA/Vereinigte Staaten
OrtRaleigh
Zeitraum30/08/213/09/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Survey of Graph Neural Networks for Electronic Design Automation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren