A Study of Age and Sex Bias in Multiple Instance Learning Based Classification of Acute Myeloid Leukemia Subtypes

Ario Sadafi, Matthias Hehr, Nassir Navab, Carsten Marr

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Accurate classification of Acute Myeloid Leukemia (AML) subtypes is crucial for clinical decision-making and patient care. In this study, we investigate the potential presence of age and sex bias in AML subtype classification using Multiple Instance Learning (MIL) architectures. To that end, we train multiple MIL models using different levels of sex imbalance in the training set and excluding certain age groups. To assess the sex bias, we evaluate the performance of the models on male and female test sets. For age bias, models are tested against underrepresented age groups in the training data. We find a significant effect of sex and age bias on the performance of the model for AML subtype classification. Specifically, we observe that females are more likely to be affected by sex imbalance dataset and certain age groups, such as patients with 72 to 86 years of age with the RUNX1::RUNX1T1 genetic subtype, are significantly affected by an age bias present in the training data. Ensuring inclusivity in the training data is thus essential for generating reliable and equitable outcomes in AML genetic subtype classification, ultimately benefiting diverse patient populations.

OriginalspracheEnglisch
TitelClinical Image-Based Procedures, Fairness of AI in Medical Imaging, and Ethical and Philosophical Issues in Medical Imaging - 12th International Workshop, CLIP 2023 1st International Workshop, FAIMI 2023 and 2nd International Workshop, EPIMI 2023, Proceedings
Redakteure/-innenStefan Wesarg, Cristina Oyarzun Laura, Esther Puyol Antón, Andrew P. King, John S.H. Baxter, Marius Erdt, Klaus Drechsler, Moti Freiman, Yufei Chen, Islem Rekik, Roy Eagleson, Aasa Feragen, Veronika Cheplygina, Melani Ganz-Benjaminsen, Enzo Ferrante, Ben Glocker, Daniel Moyer, Eikel Petersen
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten256-265
Seitenumfang10
ISBN (Print)9783031452482
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung12th International Workshop on Clinical Image-Based Procedures, CLIP 2023, 1st MICCAI Workshop on Fairness of AI in Medical Imaging, FAIMI 2023, held in conjunction with MICCAI 2023 and 2nd MICCAI Workshop on the Ethical and Philosophical Issues in Medical Imaging, EPIMI 2023 - Vancouver, Kanada
Dauer: 12 Okt. 202312 Okt. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14242 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz12th International Workshop on Clinical Image-Based Procedures, CLIP 2023, 1st MICCAI Workshop on Fairness of AI in Medical Imaging, FAIMI 2023, held in conjunction with MICCAI 2023 and 2nd MICCAI Workshop on the Ethical and Philosophical Issues in Medical Imaging, EPIMI 2023
Land/GebietKanada
OrtVancouver
Zeitraum12/10/2312/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Study of Age and Sex Bias in Multiple Instance Learning Based Classification of Acute Myeloid Leukemia Subtypes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren