A Statistical Characterization of Wireless Channels Conditioned on Side Information

Benedikt Bock, Michael Baur, Nurettin Turan, Dominik Semmler, Wolfgang Utschick

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

2 Zitate (Scopus)

Abstract

Prior knowledge about statistical channel characteristics and additional side information, such as estimated parameters shared between radar and communication systems, can both enhance physical layer applications. Generally, the wide-sense-stationary-uncorrelated-scattering (WSSUS) property together with the far-field approximation and strongly fluctuating path phases statistically characterize the unconditional wireless channel by a zero mean and Toeplitz-structured covariance matrices. In this letter, we comprehensively categorize side information based on whether the conditioning on this information preserves or abandons these statistical channel features. The established framework combines insights from a generic channel model with representing the channel as a Bayesian network (BN). Using our framework, we additionally analyze and improve machine learning (ML) aided channel modeling, clustering and estimation demonstrating its practicality for the physical layer.

OriginalspracheEnglisch
Seiten (von - bis)3508-3512
Seitenumfang5
FachzeitschriftIEEE Wireless Communications Letters
Jahrgang13
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Statistical Characterization of Wireless Channels Conditioned on Side Information“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren