A stable multi-scale kernel for topological machine learning

Jan Reininghaus, Stefan Huber, Ulrich Bauer, Roland Kwitt

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

229 Zitate (Scopus)

Abstract

Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.

OriginalspracheEnglisch
TitelIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
Herausgeber (Verlag)IEEE Computer Society
Seiten4741-4748
Seitenumfang8
ISBN (elektronisch)9781467369640
DOIs
PublikationsstatusVeröffentlicht - 14 Okt. 2015
VeranstaltungIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, USA/Vereinigte Staaten
Dauer: 7 Juni 201512 Juni 2015

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band07-12-June-2015
ISSN (Print)1063-6919

Konferenz

KonferenzIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
Land/GebietUSA/Vereinigte Staaten
OrtBoston
Zeitraum7/06/1512/06/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „A stable multi-scale kernel for topological machine learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren