A Spatially Adaptive Sparse Grid Combination Technique for Numerical Quadrature

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

High-dimensional problems have gained interest in many disciplines such as Machine Learning, Data Analytics, and Uncertainty Quantification. These problems often require an adaptation of a model to the problem as standard methods do not provide an efficient description. Spatial adaptivity is one of these approaches that we investigate in this work. We introduce the Spatially Adaptive Combination Technique using a Split-Extend scheme—a spatially adaptive variant of the Sparse Grid Combination Technique—that recursively refines block adaptive full grids to get an efficient representation of local phenomena in functions. We discuss the method in the context of numerical quadrature and demonstrate that it is suited to refine efficiently for various test functions where common approaches fail. Trapezoidal quadrature rules as well as Gauss-Legendre quadrature are investigated to show its applicability to a wide range of quadrature formulas. Error estimates are used to automate the adaptation process which results in a parameter-free version of our refinement strategy.

OriginalspracheEnglisch
TitelSparse Grids and Applications - 2018
Redakteure/-innenHans-Joachim Bungartz, Jochen Garcke, Jochen Garcke, Dirk Pflüger
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten161-185
Seitenumfang25
ISBN (Print)9783030813611
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung5th Workshop on Sparse Grids and Applications, SGA 2018 - Munich, Deutschland
Dauer: 23 Juli 201827 Juli 2018

Publikationsreihe

NameLecture Notes in Computational Science and Engineering
Band144
ISSN (Print)1439-7358
ISSN (elektronisch)2197-7100

Konferenz

Konferenz5th Workshop on Sparse Grids and Applications, SGA 2018
Land/GebietDeutschland
OrtMunich
Zeitraum23/07/1827/07/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Spatially Adaptive Sparse Grid Combination Technique for Numerical Quadrature“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren