A Smart HW-Accelerator for Non-uniform Linear Interpolation of ML-Activation Functions

Sebastian Prebeck, Wafic Lawand, Mounika Vaddeboina, Wolfgang Ecker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The compulsive nonlinearity in neural networks (NN) is introduced by well-known nonlinear functions called activation functions. Performing AI-inferences on edge devices calls for efficient approximation of those complex functions on highly restrictive hardware (HW) platforms. When designing such systems, balancing area, footprint and power consumption at an application appropriate latency is key. To address those challenges, we propose a HW-based interpolation component capable of approximating arbitrary mathematical functions. A combinatorial search-based optimization algorithm is employed to find the optimal set of interpolation points for a set of functions while also considering non-uniform distributions. The proposed solution is accompanied by a Python-based HW generator, that facilitates the process of deploying software-computed search results on HW and provides room for generating different flavors of application-optimized HW. In an effort to reduce area footprint and delay, the proposed approach exploits symmetry and biased symmetry properties of functions and applies bit width optimizations to reduce the size of the utilized computational units. Additionally, property-aware reprogrammable solutions for multifunctional use cases are incorporated into our design. Experimental analyses show that our proposed method permits achieving better area utilization and deviation error results than state-of-the-art implementations.

OriginalspracheEnglisch
TitelEmbedded Computer Systems
UntertitelArchitectures, Modeling, and Simulation - 22nd International Conference, SAMOS 2022, Proceedings
Redakteure/-innenAlex Orailoglu, Marc Reichenbach, Matthias Jung
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten267-282
Seitenumfang16
ISBN (Print)9783031150739
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung22nd International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021 - Samos, Griechenland
Dauer: 3 Juli 20227 Juli 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13511 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz22nd International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021
Land/GebietGriechenland
OrtSamos
Zeitraum3/07/227/07/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Smart HW-Accelerator for Non-uniform Linear Interpolation of ML-Activation Functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren