Abstract
A recent study of low-dissipation shock-capturing scheme [Fu et al., Journal of Computational Physics 305 (2016): 333-359] proposed a nonlinear sharp selection function to remove the contributions of candidate stencils containing discontinuities from the final reconstruction. In this paper, we train a neural network to replace this empirical level nonlinear selection function in the six-order TENO6-opt scheme. The performance and robustness of the neuron-based six-point scheme are demonstrated with the advection function and 1D Euler equations.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 450004 |
Fachzeitschrift | AIP Conference Proceedings |
Jahrgang | 2849 |
Ausgabenummer | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Sept. 2023 |
Veranstaltung | International Conference on Numerical Analysis and Applied Mathematics 2021, ICNAAM 2021 - Rhodes, Griechenland Dauer: 20 Sept. 2021 → 26 Sept. 2021 |