A Semi-Supervised Learning Approach for Identification of Piecewise Affine Systems

Yingwei Du, Fangzhou Liu, Jianbin Qiu, Martin Buss

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

12 Zitate (Scopus)

Abstract

Piecewise affine (PWA) models are attractive frameworks that can represent various hybrid systems with local affine submodels and polyhedral regions due to their universal approximation properties. The PWA identification problem amounts to estimating both the submodel parameters and the polyhedral partitions from data. In this paper, we propose a novel approach to address the identification problem of PWA systems such that the number of submodels, parameters of submodels, and the polyhedral partitions are obtained. In particular, a cluster-based algorithm is designed to acquire the number of submodels, the initial labeled data set, and initial parameters corresponding to each submodel. Additionally, we develop a modified self-training support vector machine algorithm to simultaneously identify the hyperplanes and parameter of each submodel with the ouputs of the cluster-based algorithm. The proposed algorithm is computationally efficient for region estimation and able to accomplish this task with only a small quantity of classified regression vectors. The effectiveness of the proposed identification approach is illustrated via simulation results.

OriginalspracheEnglisch
Aufsatznummer9090836
Seiten (von - bis)3521-3532
Seitenumfang12
FachzeitschriftIEEE Transactions on Circuits and Systems I: Regular Papers
Jahrgang67
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - Okt. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Semi-Supervised Learning Approach for Identification of Piecewise Affine Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren