A Semi-Automatic Light-Weight Approach Towards Data Generation for a Domain-Specific FAQ Chatbot Using Human-in-the-Loop

Anum Afzal, Tao Xiang, Florian Matthes

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

1 Zitat (Scopus)

Abstract

Employees at large companies tend to have longer waiting times if they need company-specific information and similarly someone on the other end needs to manually address those queries. Most companies are trying to incorporate LLM-powered conversational agents to make this processing faster but often struggle to find appropriate training data, especially domain-specific data. This paper introduces a semi-automatic approach for generating domain-specific training data while leveraging a domain-expert as a human-in-the-loop for quality control. We test this approach on a HR use-case of a large organization through a retrieval-based question-answering pipeline. Additionally, we also test the effect of long context on the performance of the FAQ chat for which we employ LongT5, an Efficient Transformer. Our experiments using LongT5 show that the inclusion of the generated training data improves the performance of the FAQ chatbot during inference.

OriginalspracheEnglisch
Seiten (von - bis)42-49
Seitenumfang8
FachzeitschriftInternational Conference on Agents and Artificial Intelligence
Jahrgang3
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung16th International Conference on Agents and Artificial Intelligence, ICAART 2024 - Rome, Italien
Dauer: 24 Feb. 202426 Feb. 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Semi-Automatic Light-Weight Approach Towards Data Generation for a Domain-Specific FAQ Chatbot Using Human-in-the-Loop“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren