A Scalable Platform for Robot Learning and Physical Skill Data Collection

Samuel Schneider, Yansong Wu, Lars Johannsmeier, Fan Wu, Sami Haddadin

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The intersection of robotics and artificial intelligence led to a profound paradigm shift in Robot Learning. Robots have the capacity to replicate human actions and also dynamically adapt, innovate, and excel across a spectrum of tasks. However, the heterogeneity in the deployment of robot platforms and software frameworks poses considerable challenges in terms of systematic testing and comparative analyses. Additionally, the data scarcity of especially force controlled robot manipulation is still restraining the development of advanced foundation models. A reference platform with default software stack can help to increase comparability, reducing development time and collect a large amount of tactile robot manipulation data. To address on this problem, we developed a Parallel and Distributed Robot AI (PD.RAI) framework, comprising a scalable ensemble of Robot Learning Units (RLUs), a global database, and the Robot Cluster Intelligence (RoCI). Each RLU is endowed with robot arms, cameras, and local computational units to autonomously engage in planning, control, and local machine learning of tactile manipulation skills. The RoCI system oversees the learning process and schedules the RLUs tasks. To show the functionality of the system, two black-box optimization algorithms are compared within the robot skill learning domain. An experiment with 24 different optimization tasks is conducted in parallel. The algorithms are incorporated into the same existing default modules acting as a reference environment. This allows for a realistic comparison without sacrificing diversity of possible configurations and testing environments.

OriginalspracheEnglisch
Titel2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten5925-5932
Seitenumfang8
ISBN (elektronisch)9798350377705
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 14 Okt. 202418 Okt. 2024

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Land/GebietVereinigte Arabische Emirate
OrtAbu Dhabi
Zeitraum14/10/2418/10/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Scalable Platform for Robot Learning and Physical Skill Data Collection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren