A Scalable, Configurable and Programmable Vector Dot-Product Unit for Edge AI

Sebastian Prebeck, Sathya Ashok, Mounika Vaddeboina, Keerthikumara Devarajegowda, Wolfgang Ecker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Second generation artificial intelligence (AI) migrates inference related computations from cloud towards edge devices [19]. Due to increasingly sophisticated neural network (NN) architecture search, even more complex applications come into range for execution on the edge. This enables a significant drop in latency, power consumption and bandwidth, since data transmission to cloud becomes obsolete. We address challenges to enable edge platforms with computation hardware capable of dealing with more complex applications locally. For NN inferences in general, dot product operation is the most commonly and intensively used. Thus, defining a proper unit supporting the mentioned operation in an efficient way has huge impact. Between different applications the network hyperparameters may change, including the data formats of kernels and activations. Therefor, supporting a wide variety of data formats with the dot product unit, while keeping the area increase low, seems appealing. Additionally, the computational load varies dependent on the particular application, thus a scalable solution is desireable. Next to the configurability and programmability, area as well as power efficiency plays an important role. We propose a scalable, configurable and programmable vector dot product unit, targeting an optimized footprint for low power applications to overcome the challenges of second generation AI on edge devices. The proposed solution is supported by a Python-based HW generator, which enables the derivation of featured dot product units optimized for certain applications. It is developed with the assumption to be utilized as a standalone component as well as loosely or closely coupled component associated with a CPU instruction set extension.

OriginalspracheEnglisch
TitelMBMV 2022
UntertitelMethoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen - 25. Workshop
Herausgeber (Verlag)VDE VERLAG GMBH
Seiten27-35
Seitenumfang9
ISBN (elektronisch)9783800757558
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa
Veranstaltung25. Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, MBMV 2022 - 25th Workshop on Methods and Description Languages for Modeling and Verification of Circuits and Systems, MBMV 2022 - Virtual, Online
Dauer: 17 Feb. 202218 Feb. 2022

Publikationsreihe

NameMBMV 2022: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen - 25. Workshop

Konferenz

Konferenz25. Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, MBMV 2022 - 25th Workshop on Methods and Description Languages for Modeling and Verification of Circuits and Systems, MBMV 2022
OrtVirtual, Online
Zeitraum17/02/2218/02/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Scalable, Configurable and Programmable Vector Dot-Product Unit for Edge AI“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren