A Rigorous Optimization Approach for the Generic Derivation of Secondary Information from Digital Maps for Urban Scenarios

Michael Eder, Sebastian Skibinski, Florian Mickler, Michael Ulbrich

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In the context of Highly Automated Driving (HAD) and Advanced Driver Assistance Systems (ADAS), we derive optimal stopping points for vehicles in urban scenarios. We develop a rigorous global optimization algorithm and apply it to a constrained maximization problem that is based on a high-definition map (HD map). Specific map feature functions describe the contribution of the points, curves, and polygons to the urban scenario model, while the perceived obstacles form infeasible areas. Our algorithm combines a branch-and-bound method using interval arithmetic with locally applied cubic Taylor expansions of the objective function. The polynomial maximization problem with box constraints is formulated as a root finding problem that we solve using an eigenvalue approach. We test the developed algorithm in urban scenarios and compare it to interval algorithms that either use local quadratic Taylor approaches or no local improvement at all.

OriginalspracheEnglisch
Titel2022 IEEE 25th International Conference on Intelligent Transportation Systems, ITSC 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4202-4208
Seitenumfang7
ISBN (elektronisch)9781665468800
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022 - Macau, China
Dauer: 8 Okt. 202212 Okt. 2022

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Band2022-October

Konferenz

Konferenz25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022
Land/GebietChina
OrtMacau
Zeitraum8/10/2212/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Rigorous Optimization Approach for the Generic Derivation of Secondary Information from Digital Maps for Urban Scenarios“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren