A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing

K. Vernickel, J. Weber, X. Li, J. Berg, G. Reinhart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In this paper, a revised Knowledge Discovery in Databases (KDD) procedure is proposed, which is designed especially for data mining in powder processing and other types of continuous production. The revised KDD procedure includes data preprocessing, feature engineering, machine learning and model evaluation. The proposed methods are implemented and evaluated using a dataset from a fluidized bed opposed jet mill. The evaluation results show that the machine learning model can accurately predict the product quality in this scenario and capture the internal relations between processing parameters and product quality.

OriginalspracheEnglisch
Titel2019 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2019
Herausgeber (Verlag)IEEE Computer Society
Seiten340-344
Seitenumfang5
ISBN (elektronisch)9781728138046
DOIs
PublikationsstatusVeröffentlicht - Dez. 2019
Extern publiziertJa
Veranstaltung2019 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2019 - Macao, Macau
Dauer: 15 Dez. 201918 Dez. 2019

Publikationsreihe

NameIEEE International Conference on Industrial Engineering and Engineering Management
ISSN (Print)2157-3611
ISSN (elektronisch)2157-362X

Konferenz

Konferenz2019 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2019
Land/GebietMacau
OrtMacao
Zeitraum15/12/1918/12/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Revised KDD Procedure for the Modeling of Continuous Production in Powder Processing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren