A relation-augmented fully convolutional network for semantic segmentation in aerial scenes

Lichao Mou, Yuansheng Hua, Xiao Xiang Zhu

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

164 Zitate (Scopus)

Abstract

Most current semantic segmentation approaches fall back on deep convolutional neural networks (CNNs). However, their use of convolution operations with local receptive fields causes failures in modeling contextual spatial relations. Prior works have sought to address this issue by using graphical models or spatial propagation modules in networks. But such models often fail to capture long-range spatial relationships between entities, which leads to spatially fragmented predictions. Moreover, recent works have demonstrated that channel-wise information also acts a pivotal part in CNNs. In this work, we introduce two simple yet effective network units, the spatial relation module and the channel relation module, to learn and reason about global relationships between any two spatial positions or feature maps, and then produce relation-augmented feature representations. The spatial and channel relation modules are general and extensible, and can be used in a plug-and-play fashion with the existing fully convolutional network (FCN) framework. We evaluate relation module-equipped networks on semantic segmentation tasks using two aerial image datasets, which fundamentally depend on long-range spatial relational reasoning. The networks achieve very competitive results, bringing significant improvements over baselines.

OriginalspracheEnglisch
TitelProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Herausgeber (Verlag)IEEE Computer Society
Seiten12408-12417
Seitenumfang10
ISBN (elektronisch)9781728132938
DOIs
PublikationsstatusVeröffentlicht - Juni 2019
Veranstaltung32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, USA/Vereinigte Staaten
Dauer: 16 Juni 201920 Juni 2019

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2019-June
ISSN (Print)1063-6919

Konferenz

Konferenz32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Land/GebietUSA/Vereinigte Staaten
OrtLong Beach
Zeitraum16/06/1920/06/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „A relation-augmented fully convolutional network for semantic segmentation in aerial scenes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren