A Reinforcement Learning-Boosted Motion Planning Framework: Comprehensive Generalization Performance in Autonomous Driving

Rainer Trauth, Alexander Hobmeier, Johannes Betz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This study introduces a novel approach to autonomous motion planning, informing an analytical algorithm with a reinforcement learning (RL) agent within a Frenet coordinate system. The combination directly addresses the challenges of adaptability and safety in autonomous driving. Motion planning algorithms are essential for navigating dynamic and complex scenarios. Traditional methods, however, lack the flexibility required for unpredictable environments, whereas machine learning techniques, particularly reinforcement learning (RL), offer adaptability but suffer from instability and a lack of explainability. Our unique solution synergizes the predictability and stability of traditional motion planning algorithms with the dynamic adaptability of RL, resulting in a system that efficiently manages complex situations and adapts to changing environmental conditions. Evaluation of our integrated approach shows a significant reduction in collisions, improved risk management, and improved goal success rates across multiple scenarios. The code used in this research is publicly available as open-source software and can be accessed at the following link: https://github.com/TUM-AVS/Frenetix-RL.

OriginalspracheEnglisch
Titel35th IEEE Intelligent Vehicles Symposium, IV 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2413-2420
Seitenumfang8
ISBN (elektronisch)9798350348811
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung35th IEEE Intelligent Vehicles Symposium, IV 2024 - Jeju Island, Südkorea
Dauer: 2 Juni 20245 Juni 2024

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
ISSN (Print)1931-0587
ISSN (elektronisch)2642-7214

Konferenz

Konferenz35th IEEE Intelligent Vehicles Symposium, IV 2024
Land/GebietSüdkorea
OrtJeju Island
Zeitraum2/06/245/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Reinforcement Learning-Boosted Motion Planning Framework: Comprehensive Generalization Performance in Autonomous Driving“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren