A reduced basis Landweber method for nonlinear inverse problems

Dominik Garmatter, Bernard Haasdonk, Bastian Harrach

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

14 Zitate (Scopus)

Abstract

We consider parameter identification problems in parametrized partial differential equations (PDEs). These lead to nonlinear ill-posed inverse problems. One way of solving them is using iterative regularization methods, which typically require numerous amounts of forward solutions during the solution process. In this article we consider the nonlinear Landweber method and couple it with the reduced basis method as a model order reduction technique in order to reduce the overall computational time. In particular, we consider PDEs with a high-dimensional parameter space, which are known to pose difficulties in the context of reduced basis methods. We present a new method that is able to handle such high-dimensional parameter spaces by combining the nonlinear Landweber method with adaptive online reduced basis updates. It is then applied to the inverse problem of reconstructing the conductivity in the stationary heat equation.

OriginalspracheEnglisch
Aufsatznummer035001
FachzeitschriftInverse Problems
Jahrgang32
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 4 Feb. 2016
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „A reduced basis Landweber method for nonlinear inverse problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren