A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy

Leonard Knoedler, Maximilian Miragall, Martin Kauke-Navarro, Doha Obed, Maximilian Bauer, Patrick Tißler, Lukas Prantl, Hans Guenther Machens, Peter Niclas Broer, Helena Baecher, Adriana C. Panayi, Samuel Knoedler, Andreas Kehrer

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

15 Zitate (Scopus)

Abstract

Background: The grading process in facial palsy (FP) patients is crucial for time- and cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most commonly used classification system in FP diagnostics. This study investigated the benefits of linking machine learning (ML) techniques with the HBS. Methods: Image datasets of 51 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2020 and May 2021, were used to build the neural network. A total of nine facial poses per patient were used to automatically determine the HBS. Results: The algorithm had an accuracy of 98%. The algorithm processed the real patient image series (i.e., nine images per patient) in 112 ms. For optimized accuracy, we found 30 training runs to be the most effective training length. Conclusion: We have developed an easy-to-use, time- and cost-efficient algorithm that provides highly accurate automated grading of FP patient images. In combination with our application, the algorithm may facilitate the FP surgeon’s clinical workflow.

OriginalspracheEnglisch
Aufsatznummer1739
FachzeitschriftJournal of Personalized Medicine
Jahrgang12
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - Okt. 2022
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren