A PTAS for unsplittable flow on a path

Fabrizio Grandoni, Tobias Mömke, Andreas Wiese

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

In the Unsplittable Flow on a Path problem (UFP) we are given a path with edge capacities, and a set of tasks where each task is characterized by a subpath, a demand, and a weight. The goal is to select a subset of tasks of maximum total weight such that the total demand of the selected tasks using each edge e is at most the capacity of e. The problem admits a QPTAS [Bansal, Chakrabarti, Epstein, Schieber, STOC'06; Batra, Garg, Kumar, Mömke, Wiese, SODA'15]. After a long sequence of improvements [Bansal, Friggstad, Khandekar, Salavatipour, SODA'09; Bonsma, Schulz, Wiese, FOCS'11; Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA'14; Grandoni, Mömke, Wiese, Zhou, STOC'18], the best known polynomial time approximation algorithm for UFP has an approximation ratio of 1+1/(e+1) + epsilon < 1.269 [Grandoni, Mömke, Wiese, SODA'22]. It has been an open question whether this problem admits a PTAS. In this paper, we solve this open question and present a polynomial time (1 + epsilon)-approximation algorithm for UFP.

OriginalspracheEnglisch
TitelSTOC 2022 - Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
Redakteure/-innenStefano Leonardi, Anupam Gupta
Herausgeber (Verlag)Association for Computing Machinery
Seiten289-302
Seitenumfang14
ISBN (elektronisch)9781450392648
DOIs
PublikationsstatusVeröffentlicht - 6 Sept. 2022
Extern publiziertJa
Veranstaltung54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 - Rome, Italien
Dauer: 20 Juni 202224 Juni 2022

Publikationsreihe

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Konferenz

Konferenz54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022
Land/GebietItalien
OrtRome
Zeitraum20/06/2224/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A PTAS for unsplittable flow on a path“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren