A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images

Wenjia Bai, Wenzhe Shi, Declan P. O'Regan, Tong Tong, Haiyan Wang, Shahnaz Jamil-Copley, Nicholas S. Peters, Daniel Rueckert

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

186 Zitate (Scopus)

Abstract

The evaluation of ventricular function is important for the diagnosis of cardiovascular diseases. It typically involves measurement of the left ventricular (LV) mass and LV cavity volume. Manual delineation of the myocardial contours is time-consuming and dependent on the subjective experience of the expert observer. In this paper, a multi-atlas method is proposed for cardiac magnetic resonance (MR) image segmentation. The proposed method is novel in two aspects. First, it formulates a patch-based label fusion model in a Bayesian framework. Second, it improves image registration accuracy by utilizing label information, which leads to improvement of segmentation accuracy. The proposed method was evaluated on a cardiac MR image set of 28 subjects. The average Dice overlap metric of our segmentation is 0.92 for the LV cavity, 0.89 for the right ventricular cavity and 0.82 for the myocardium. The results show that the proposed method is able to provide accurate information for clinical diagnosis.

OriginalspracheEnglisch
Aufsatznummer6494647
Seiten (von - bis)1302-1315
Seitenumfang14
FachzeitschriftIEEE Transactions on Medical Imaging
Jahrgang32
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - 2013
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren