A priori error estimates for the finite element approximation of westervelt's quasi-linear acoustic wave equation

Vanja Nikolić, Barbara Wohlmuth

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

12 Zitate (Scopus)

Abstract

We study the spatial discretization ofWestervelt's quasi-linear strongly damped wave equation by piecewise linear finite elements. Our approach employs the Banach fixed-point theorem combined with a priori analysis of a linear wave model with variable coefficients. Degeneracy of the semidiscrete Westervelt equation is avoided by relying on the inverse estimates for finite element functions and the stability and approximation properties of the interpolation operator. In this way, we obtain optimal convergence rates in L2-based spatial norms for sufficiently small data and mesh size and an appropriate choice of initial approximations. Numerical experiments in a setting of a one- dimensional channel as well as for a focused-ultrasound problem illustrate our theoretical findings.

OriginalspracheEnglisch
Seiten (von - bis)1897-1918
Seitenumfang22
FachzeitschriftSIAM Journal on Numerical Analysis
Jahrgang57
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „A priori error estimates for the finite element approximation of westervelt's quasi-linear acoustic wave equation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren