A principled deep random field model for image segmentation

Pushmeet Kohli, Anton Osokin, Stefanie Jegelka

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

63 Zitate (Scopus)

Abstract

We discuss a model for image segmentation that is able to overcome the short-boundary bias observed in standard pairwise random field based approaches. To wit, we show that a random field with multi-layered hidden units can encode boundary preserving higher order potentials such as the ones used in the cooperative cuts model of [12] while still allowing for fast and exact MAP inference. Exact inference allows our model to outperform previous image segmentation methods, and to see the true effect of coupling graph edges. Finally, our model can be easily extended to handle segmentation instances with multiple labels, for which it yields promising results.

OriginalspracheEnglisch
Aufsatznummer6619101
Seiten (von - bis)1971-1978
Seitenumfang8
FachzeitschriftProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
PublikationsstatusVeröffentlicht - 2013
Extern publiziertJa
Veranstaltung26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013 - Portland, OR, USA/Vereinigte Staaten
Dauer: 23 Juni 201328 Juni 2013

Fingerprint

Untersuchen Sie die Forschungsthemen von „A principled deep random field model for image segmentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren