A posteriori error estimates for elliptic problems in two and three space dimensions

Folkmar A. Bornemann, Bodo Erdmann, Ralf Kornhuber

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

115 Zitate (Scopus)


Let u ∈ H be the exact solution of a given selfadjoint elliptic boundary value problem, which is approximated by some ũ ∈ S, S being a suitable finite-element space. Efficient and reliable a posteriori estimates of the error ||u - ũ||, measuring the (local) quality of ũ, play a crucial role in termination criteria and in the adaptive refinement of the underlying mesh. A well-known class of error estimates can be derived systematically by localizing the discretized defect problem by using domain decomposition techniques. In this paper, we provide a guideline for the theoretical analysis of such error estimates. We further clarify the relation to other concepts. Our analysis leads to new error estimates, which are specially suited to three space dimensions. The theoretical results are illustrated by numerical computations.

Seiten (von - bis)1188-1204
FachzeitschriftSIAM Journal on Numerical Analysis
PublikationsstatusVeröffentlicht - Juni 1996
Extern publiziertJa


Untersuchen Sie die Forschungsthemen von „A posteriori error estimates for elliptic problems in two and three space dimensions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren