TY - GEN
T1 - A Passivity-based Approach on Relocating High-Frequency Robot Controller to the Edge Cloud
AU - Chen, Xiao
AU - Sadeghian, Hamid
AU - Chen, Lingyun
AU - Trobinger, Mario
AU - Swirkir, Abadalla
AU - Naceri, Abdeldjallil
AU - Haddadin, Sami
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - As robots become more and more intelligent, the complexity of the algorithms behind them is increasing. Since these algorithms require high computation power from the onboard robot controller, the weight of the robot and energy consumption increases. A promising solution to tackle this issue is to relocate the expensive computation to the cloud. In this pioneering work, the possibility of relocating a state-of-the-art nonlinear control is investigated. To this end, the Unified Force-Impedance Controller (UFIC) is relocated to a remote location and high frequency feedback loop is established by including the remote controller in the loop. Passivity analysis is used to ensure the stability of the whole system, comprising the robot in interaction with the environment, the communication channel, as well as the remote controller. The instability associated with the communication channel is resolved by Time Domain Passivity Approach (TDPA). The performance of the proposed framework is experimentally evaluated on a robot arm in interaction with the environment. The results illustrate the stability of the system to a time-varying delay of up to 50 ± 10ms.
AB - As robots become more and more intelligent, the complexity of the algorithms behind them is increasing. Since these algorithms require high computation power from the onboard robot controller, the weight of the robot and energy consumption increases. A promising solution to tackle this issue is to relocate the expensive computation to the cloud. In this pioneering work, the possibility of relocating a state-of-the-art nonlinear control is investigated. To this end, the Unified Force-Impedance Controller (UFIC) is relocated to a remote location and high frequency feedback loop is established by including the remote controller in the loop. Passivity analysis is used to ensure the stability of the whole system, comprising the robot in interaction with the environment, the communication channel, as well as the remote controller. The instability associated with the communication channel is resolved by Time Domain Passivity Approach (TDPA). The performance of the proposed framework is experimentally evaluated on a robot arm in interaction with the environment. The results illustrate the stability of the system to a time-varying delay of up to 50 ± 10ms.
UR - http://www.scopus.com/inward/record.url?scp=85168676354&partnerID=8YFLogxK
U2 - 10.1109/ICRA48891.2023.10160366
DO - 10.1109/ICRA48891.2023.10160366
M3 - Conference contribution
AN - SCOPUS:85168676354
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 5242
EP - 5248
BT - Proceedings - ICRA 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Y2 - 29 May 2023 through 2 June 2023
ER -