TY - GEN
T1 - A Novel Potential Line Strategy for Autonomous Vehicle Control in Lane-Free Traffic
AU - Zhang, Hanwen
AU - Rostami-Shahrbabaki, Majid
AU - Troullinos, Dimitrios
AU - Bogenberger, Klaus
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Recent developments in vehicular traffic have brought about the concept of lane-free traffic, challenging the traditional notion of parallel lanes, allowing vehicles to potentially drive at any arbitrary lateral location of the road. In this paper, we investigate the potential lines strategy proposed in our previous study for an efficient lateral distribution of vehicles in automated lane-free freeways. Potential lines allow for structured lane-free traffic where each vehicle receives a desired lateral location based on its desired speed. To this end, we mimic the behavior of conventional driving by assigning the right side of the road to slower vehicles while faster vehicles are led toward the left. As a result, the road surface effectively forms a speed-based hierarchy, with vehicles flowing smoothly from right to left in a monotonic increase of speed. We utilize the Probability Integral Transform approach to have a uniform lateral distribution of potential lines despite different distributions of desired speed. In addition, we show that the potential lines are efficient means of handling different maneuvers such as merge, diverge, and emergency vehicle preemption on a freeway. The simulation results for a relatively long freeway demonstrate that potential lines can minimize unnecessary lateral movement during overtaking, creating a more structured and efficient driving environment. Furthermore, results show that potential lines can smoothly guide vehicles to take off-ramps or merge from on-ramps in high-density traffic conditions.
AB - Recent developments in vehicular traffic have brought about the concept of lane-free traffic, challenging the traditional notion of parallel lanes, allowing vehicles to potentially drive at any arbitrary lateral location of the road. In this paper, we investigate the potential lines strategy proposed in our previous study for an efficient lateral distribution of vehicles in automated lane-free freeways. Potential lines allow for structured lane-free traffic where each vehicle receives a desired lateral location based on its desired speed. To this end, we mimic the behavior of conventional driving by assigning the right side of the road to slower vehicles while faster vehicles are led toward the left. As a result, the road surface effectively forms a speed-based hierarchy, with vehicles flowing smoothly from right to left in a monotonic increase of speed. We utilize the Probability Integral Transform approach to have a uniform lateral distribution of potential lines despite different distributions of desired speed. In addition, we show that the potential lines are efficient means of handling different maneuvers such as merge, diverge, and emergency vehicle preemption on a freeway. The simulation results for a relatively long freeway demonstrate that potential lines can minimize unnecessary lateral movement during overtaking, creating a more structured and efficient driving environment. Furthermore, results show that potential lines can smoothly guide vehicles to take off-ramps or merge from on-ramps in high-density traffic conditions.
UR - http://www.scopus.com/inward/record.url?scp=85186517839&partnerID=8YFLogxK
U2 - 10.1109/ITSC57777.2023.10421795
DO - 10.1109/ITSC57777.2023.10421795
M3 - Conference contribution
AN - SCOPUS:85186517839
T3 - IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
SP - 4173
EP - 4180
BT - 2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Y2 - 24 September 2023 through 28 September 2023
ER -