A novel multistage CAD system for breast cancer diagnosis

Kübra Karacan, Tevfik Uyar, Burcu Tunga, M. Alper Tunga

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

Computer-aided diagnosis (CAD) systems are widely used to diagnose breast cancer using mammography screening. In this research, we proposed a new multistage CAD system based on image decomposition with High-Dimensional Model Representation (HDMR) which is a divide-and-conquer algorithm. We used digital mammograms from Digital Database for Screening Mammography as dataset. We neglected BIRADS classification and used a brand-new clustering based on HDMR constant and breast size. To find the best performance of HDMR-based CAD system, we compared different pre-processing settings such as contrast enhancement with CLAHE and HDMR, feature extraction with HDMR, feature scaling, dimension reduction with Linear Discriminant Analysis. We used several Machine Learning algorithms and measured the performance of proposed system for normal–benign–malign classification, cancer detection, mass detection and found that the proposed system achieves 66 % , 71 % and 87 % accuracy, respectively. We were able to achieve 92 % accuracy, 100 % sensitivity and 91 % specificity in specific clusters. These results are comparable with deep learning-based methods although we simplified the pipeline and used brand-new HDMR-based processes.

OriginalspracheEnglisch
Seiten (von - bis)2359-2368
Seitenumfang10
FachzeitschriftSignal, Image and Video Processing
Jahrgang17
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - Juli 2023
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „A novel multistage CAD system for breast cancer diagnosis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren